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Abstnd-A theory for the allisymmetric deformation orisotropic. hyperelastic circular plates which
is valid for arbitrarily large strains and rotations is developed. The theory is implemented numerically
and used to perform an elttensive analysis of uniformly-loaded circular plates with hinged and
clamped edges. Particular attention is paid to large-strain and large-rotation effects.

\. INTRODUCTION

The axisymmetric deformation of circular plates has probably been studied in more detail
than any other plate problem. Even so. large-strain effects and the influence of the ratio
alh of plate radius to thickness have received little attention. Presumably. this is because
most plate solutions are based on equations such as the von Karman equations. which
ignore these factors. A few recent solutions such as Refs [I. 2]. based on the Reissner
equations[3]. do. however. show the effect of a/h. In this paper. a plate theory which is
valid for arbitrarily large strains. displacements and rotations is developed. The numerical
solution of the resulting governing equations makes it possible to analyze a very wide range
of deformations. including some which are well beyond the ranges for which the von
Karman and Rcissner equations are applicable. Large-strain effects and the importance of
the ratio a/h when rotations are large are thus shown. Much of the current research on
the large deflection of plates assumes elasto-plastic constitutive relations[4]. In contrast.
hyperclastic behavior is assumed here.

Consider a thin circular plate of radius a and thickness h subjected to a uniform
transverse load q per unit area (Fig. I). Let the plate be made of a homogeneous. isotropic,
hyperelastic material. Further assume that like most materials which can undergo large
elastic strains. such as rubber, the material is incompressible. The non-linear Mooney-Rivlin
model adequately describes many real materials in this class. and is assumed here. The
material constants C lo C2 in this model can be chosen to model a wide range of linear and
non-linear responses. The constants will be chosen as C I = 5G/8 and C2 = -G/8. where
G = E/2( I + \,). for the numerical calculations. This will allow the results to be compared
with results in the literature. most of which are for linear materials. Direct comparisons
can be made with those results given for incompressible materials (v = 0.5). For a review
of solutions to the title problem. see Brodland[5]. The behavior of plates under clamped
and hinged edge conditions will be considered in detail. The use of radially restrained edges
in both cases prevents possible buckling in the hoop direction[6] due to compressive hoop
stresses.

It can be shown[5] that the axisymmetric deflection of uniformly-loaded circular plates
is governed by a geometric parameter. a load parameter and a material parameter. These
parameters are usually defined as a/h. qa4/Dh and v. respectively, in terms of
D = Eh3j12(1- v2

). Deflections w/h and membrane and bending stresses O'a2h/D result.
When strains are large. parameters a/h. qah2/D and v. which produce similar middle surface
shapes. are more appropriate. This paper investigates the influence of the geometric and
load parameters over wide ranges of their values.
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Fig. I. Uniformly-loaded circular plate.

2. GOVERNING EQUATIONS

The non-linear deflection of plates is governed by equilibrium. strain-displacement
and constitutive equations[S]. These equations are well known. Under suitable restrictions
on the magnitude of strains and rotations. the above equations can be combined to yield
pairs of higher-order. coupled. governing equations. See Chia[7]. Donnell[8] or Reissner[3]
for a discussion of particular restrictions and their resulting governing equations. The
governing equations can be directly solved or they can be recast and solved using a
variational principle. The latter approach is used here.

Consider the axisymmetric deformation of a circular plate. Assume that the defor
mation satisfies a relaxed Kirchhoff hypothesis; that is. particles on a normal N to the
undeformed middle surface remain on their corresponding normal n to the deformed
image of the middle surface. but their distance from the middle surface can change. This
formulation allows deformations consistent with large middle surface strains, but neglects
shear strain. Note that the deformed image of the middle surface will not, in general.
correspond to the middle of the deformed plate. The deformed plate is then described by

r = r(s)cr(O)+z(s)cu x =r+n(N)n (I)

where r is the position vector to an arbitrary point on the deformed middle surface; n is a
unit outward normal to the deformed middle surface s, given by

n =cos t/J e. + sin t/J Cr (2)

in terms of the angle t/J between the meridional tangent and er ; and x gives the position of
an arbitrary point initially at position N through the plate thickness (Fig. I). Equations (I)
and (2) are written in terms of a cylindrical coordinate system (r, 9, z) which has associated
orthonormal basis (cr. Ce. e.). Surface coordinates (s.9) measure arc length along a meridian
and along a parallel circle. respectively. and correspond to the lines of curvature on s. The
distance n to an arbitrary point at x is measured along n from the deformed middle surface
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s. The undeformed configuration S is distinguished from the deformed configuration s by
the use of upper case symbols, and is given by

R = Se" X = R+Ne.. <l> = O. (3)

The deformation is made mathematically explicit by assuming that S maps onto sand
by specification of

s = s(S). 8 = e, n = n(N).

We note that the principal stretches Vi are easily calculated as

(4)

(5)

in terms of the principal stretches A... cc = 1. 2 in the meridional and hoop directions,
respectively. and curvatures k. of the deformed middle surface s. These deformation mea
sures are given in tum by

and

kl = dcP/ds. k2 = (sin cP)/r

(6)

(7)

respt.'Ctively.
The ratio of corresponding volume elements (giG) 1/2 arising from the deformation is

given by

(8)

where (a/A) 1/2 is the ratio of corresponding middle surface element areas and is given by

For incompressible materials. we have

(g/G) 1/2 = I.

(9)

(10)

Substituting eqns (9), (10) and (5) into eqn (8) and integrating through the plate
thickness yields

(11)

which by reversion of series formulae can be rewritten to yield

The deformation is completely specified by eqns (6). (7) and (12).
We assume the material to be hyperelastic; that is, we assume that it has a strain energy

density function w which depends only on the current, local, strain state. The mechanical
properties of the material can thus be incorporated through w. The Mooney-Rivlin strain
energy function
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(13)

where C.. C2 are material constants

and

(14)

(15)

is assumed here. The constants C" C2 can. ifdesired, be chosen to model small-strain linear
response (with v =0.5)-a feature which will allow subsequent comparison of results
obtained here with the results for linear materials contained in the literature.

It is advantageous to cast the problem in terms of total potential energy P. The strain
energy component W of P is given by

(16)

where V denotes the undeformed plate volume ,md

(17)

Equation (17) follows from standurd arguments including use of eqn (15) to eliminate V3'

Substitution of eqns (5) and (12)-( 14) into eqn (17) followed by simplifications common
to thin-plate theory yields

.'/Y =C, {[l;+,tj+,t,21i 2-3jh+[k;().i 2+3..l.,-4,ti 4)

+4k l k2,tj 4).2" 4+ ki(),i 2+ 3li 4li 4)Jh3/12}

+C2 {[(l; -k;,t2"2h214)-' +(,ti-k~,t12h2/4)-1

+l;li - 3]h+{k;+4k,k2+ k~]h3/12}.

This is a constitutive equation

(18)

(19)

for the middle surface of the plate. It is valid for arbitrarily large strains provided that radii
of curvatures in the deformed state are large compared to the deformed plate thickness. A
similar approach has bt.-en used by Simmonds{9], Taber{lOj, and Brodland and
Cohen[ll, 12] to derive large-strain constitutive equations for axisymmetric shells. For
C2 = 0, eqn (18) reduces to Simmond's eqn (28), suggesting that the thin-plate sim
plifications used here may be equivalent to the somewhat different simplifying assumptions
used there.

Stresses based on the initial area are givcn by

(20)

The ratio of the deformed differential area to the undeformed differential area is given by
I/A;. Thus, a correction based on the area over which t1;* acts must be made when strains
are large. The true stress is given by
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(21)

True stress G'j is used herein unless noted otherwise. Membrane stresses <tr and a'f in the
meridian and hoop directions. respectively. are calculated at N = O. Bending stresses G'~

and G'~ in the meridian and hoop directions are taken as the difference between the stress
at N = ht2 and the corresponding membrane stress.

The total potential energy P of the deformed plate is given by

P=W-Q

where Q is the potential of the uniform transverse load q and is given by

Q = 2n:qf r w(r) dr

(22)

(23)

in terms of axial displacement w(r).
The deformed equilibrium configuration is determined using the variational principle

that deformed equilibrium configurations correspond to local stationary values of the total
potential energy. It is not. in general. possible to use even the simplified integral (16a) in
conjunction with eqn (22) and the variational principle to analytically determine the
deformt.'d plate meridian. Appropriate numerical techniques. however. solve this problem
easily.

3. NUMERICAL ANALYSIS

let the meridian be broken into a series of discrete pieces as shown in Fig. 2. The n
segmental functions SJ are pieced together between the n+ I nodes to satisfy the radial.
axial and angular positions rl' Zj and <PI of the nodes. Spt.ocification of segmental functions
Sj by

(24)

in terms of local Cartesian coordinates tJ. ~ using

z

I- f j+I-------;

z,

l-- ---l~__l'_""'r

Fig. 2. Segmental representation.
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(25)

(26)

(27)

provides a piecewise cubic representation of the meridian. and allows the problem to be
cast in terms of the 3(n + I) nodal positions ri' 1., and t/>J (j = I to n+ I) or Xi (i = I to
3(n+ 1)). Since the transverse displacement "i(~) with respect to the local" - ~ coordinate
system can be assumed small compared with Ii' the meridian angle t/> and curvature k l are
given by

(28)

and

(29)

Radial and axial positions, principal stretches and parallel curvature arc given by

and

z(e) = (I - ~)zJ + ~zJ ~ 1+ ,,(e) cos (Xj

(30)

(31)

(32)

(33)

The total strain energy integral is one-dimensional under axisymmetric deformations
.md can be written as

W= 27Cf rir dr. (34)

This integral can be evaluated in terms of nodal positions Xi using eqns (24)-(33) and
Gaussian quadrature. which for p Gauss points, G k • per segment. takes the form

n p

'II/' = 27C L L r(Gd fk lr(Gk )
i-I k-I

(35)

where fk are Gaussian weighting factors. Substitution of eqn (35) into eqn (22) yields a
total strain energy of the form

W = W(Xi ) = W(X). (36)

Similarly, the potential Q of the transverse load q can be evaluated in terms of nodal
positions using eqns (23) and (31) to yield
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Q = Q(X). (37)

The total potential energy can then be written as

P = P(Xj ) = P(X). (38)

The problem is thus reduced to the form of a non-linear programming problem in that the
stationary values of an objective function P. which cannot be written as a bilinear form in
X. are to be found in terms ofX. A host of techniques exist for the solution of this problem.
A sequential gradient technique of the form

(39)

where

g = grad P. H = grad2 P (40)

and d is a calculated displacement vector to a better estimate X+d. is satisfactory. The
process can be accelerated by using a displacement oed where oe is determined by trial and
error to minimize P along X+~d. This so-called line search procedure is numerically
efficient. as multiple evaluation of P(X +oed) requires considerably less computer time than
calculation of d.

4. RESULTS AND DISCUSSION

The linear solutions. the non-linear analytical solutions of Way[l3] and 8erger[14].
the membrane solution of Hencky[15]. and the numerical solutions developed herein are
considered over their respective domains. Since the results of Brodland (a/h ~ 400) and
Way would be graphically indistinguishable over their common domain in Figs 3. 4 and 6.
a solid line is used to represent both. In such figures the results of Brodland cover the full
domain of the graph. The domain of Way's original results is indicated on Figs 3 and 4.
Results calculated by Brodland using Way's method up to approximately Q = 300 are also
indicated.

4.1. Thin platl's
Figure 3 shows the load-<enter detlection behavior of a very thin hinged plate. Note

that log-log axes are used. The Way and Berger plate solutions and the Hencky membrane
solution are subject to the limitations of the von Karman equations. Le. small strains and
rotations. The solution developed herein agrees with these solutions when the plate is thin
(a/h ~ 400).

10,.-------- ....".._--,

THIN PLATES

--- LINEAR
-- BRODLAND Bo WAY
---- BERGER
---- HENCKY

WAY AS EXTENDED BY
BRODLAND (SEE TEXT

WAY

il~
~ 1.0

0.1 ~l-..e.---'-.&:-----IO.L.O----IOO..L...-O---l-OOOO..L----lOOOOO--'

qQ"
QaDii'"

Fig. 3. Center deftection vs load.
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A stress analysis reveals how the mechanism of load carrying changes with increasing
load. Figure 4 shows that membrane stresses am are nearly a magnitude less than bending
stresses a b at Q = 2, and become even less significant with decreasing load. Thus, load is
carried almost exclusively by plate bending in this range. The load range 2 < Q < 1000 is
transitional; membrane effects become increasingly important compared to bending stresses
until at Q ::::: 12, sutlicient geometric changes have occurred that the load is carried equally
by bending and membrane modes. and bending and membrane stresses are of the same
magnitude. At a load ofQ = 1000, bending stresses arc about a third as large as membrane
stresses. Their influence on the plate seems. however, to be slight, and the membrane mode
of support predominates.

Figure 5 shows normalized deflection contours calculated using the linear solution,
Hencky's solution. and determined numerically for Q = 10.000. Note that the normalized
deflection contours (Le. the plate shapes) predicted by the linear solution and by Hencky's
solution do not depend on the value of Q. It is clear that the shape of a thin hinged plate
changes surprisingly little with load.

The center deflection of a thin clamped plate is also shown in Fig. 3. Its center and
edge stresses are shown in Fig. 6. For small loads Q < 10 and correspondingly small
deflections, it is clear that the load is carried primarily by bending. Because the clamped
plate is more severely restrained than a similar hinged plate. it deflects less for a given load.
The linear behavior of both plates is limited by deflections of w/h ~ 0.15. A transition from
load carrying by bending to load carrying primarily by membrane effects occurs over
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10 < Q < 5000. For loads higher than Q = 5000, the detlections and membrane stresses in
a clamped plate approach those in a hinged plate or a membrane.

Figure 5 shows that the normalized profile of a clamped plate changes much more with
applied load than that of a hinged plate. For very large loads, the profiles of clamped and
hinged plates become quite similar, and both approach the shape of a uniformly-loaded
membrane.

Stress and detlection profiles for hinged and clamped plates with Q = 120 and 300 are
given in Brodland[5]. These profiles also describe moderately thick plates; e.g. alh = 20.
Strains and rotations are still small in moderately thick plates at these loads and their
behavior is therefore like that of thin plates.

4.2. Moderately thick plat(·s
When loads are high and a plate is not very thin, rotations and strains are no longer

small. For example, the maximum centerdetlections shown in Fig. 7 for plates with alh = 10
and 20 are 1.4 times the plate radius. Membrane strains are approximately 80% and edge
rotations are nearly 90'. (In contrast, the maximum strains and rotations in a thin plate
(a/h ~ 400) for Q = 100.000 are only 0.1% and 4', respectively.)

The von Karman equations do not adequately describe deflections as large as these
because the assumptions used in their derivation are no longer valid. For example, when
duldr = 0.3 and dwldr = 1.4, the meridional strain estimate
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J(( dU)2 (dW)2) du I (dW)2e. = I + dr + dr - I ~ dr + 2" dr (41)

used in the von Karman equations yields a value which is nearly 40% too large. In addition.
when meridian rotations are this large. the assumed equivalence of quantities given in
Lagrangian and Eulerian coordinates is in error by as much as 50%. It is. incidentally, these
two simplifications which make the von Karman equations independent of the geometric
parameter alh (see Brodland[5] or Fung[16]). Discemable discrepancies begin to appear
between the von Karman solutions and the numerical solutions in clamped plates as early
as Q = 1000, and in hinged plates when Q is as low as 500 when alh = 20 (see Figs 4, 6
and 7).

The Reissner equations are valid when rotations are large but strains are still small.
They would thus adequately describe the behavior of a hinged or clamped plate with
alh = 20 up to approximately Q = 10,000. at which point strains and rotations have reached
10% and 300

• respectively. The Reissner equations would extend the range of valid solutions
beyond the range of those based on the von Karman equations even more. when radial
constraints are not so strong (e.g. an annulus with an edge load[l» and large rotations can
occur long before strains become large.

When strains and rotations are both large. deflections and stresses are significantly
dilTerent from those predicted by the von Karman equations. For example. Fig. 7 shows
the elTect of alh on the center detlection of both clamped and hinged plates. Numerical
results for alh ~ 400 compare very well with the various analytical solutions to the von
Kannan equations. For high loads. Q. and smaller valul.'S of a/h. the ratio ofcenter delk'Ction.
wIn.... to plate radius bl.'Comes significant. even for moderate values of wm.... For example.
if alh = 40 and Q = 100.000. then wm"./h = 14.2. and the ratio wm.../a is approximately
0.35. The deflection is 10% more than that predicted by the von Karman equations for a
thin plate. The discrepancies between the thin and moderately thick plate solutions arc
more pronounced for alh = 20; and for alh = 10 the numerical solutions diverge from the
thin plate solutions shortly after the range of linear theory (wm.../h ~ 0.15) is past. When
wlll.../h > 3 a uniformly loaded plate behaves like a membrane with respect to delk'Ctions
and stresses. except within the boundary layer which develops when the edge is clamped.
For a discussion of this boundary layer. see Refs [2. 5. 17].

Axial load is carried by meridional stress NI and shear stress QI according to

(42)

When rotations are small, a significant part of the axial load is carried by shear stress QI'
When rotations are large, as they are in moderately thick plates under high load. the load
carrying capacity of Ql is much reduced because of the cos 0 term in eqn (42), and as a
result. the meridional membrane stress N I must carry the bulk of the axial load. Figure 8
shows that the meridional membrane stress 11'1 in a moderately thick hinged plate (a/h = 20)
increases significantly toward its outer edge as a result of this rotational effect. Membrane
stresses in a clamped plate with the same load and geometric proportions are virtually
identical except within the boundary layer at the clamped edge. Figure 8 also shows that
the strain condition &~(a) = 0 associated with a radially restrained edge does not imply that

11'1(a) = !11'1'(a)
v

(43)

in a Mooney-Rivlin material w!ten strains are large.
Membrane stresses are further increased by the thinning of the plate. Figure 8 shows

membrane stretches ,1.1 and ,1.2' Their product ().,A.z) is inversely proportional to the plate
thickness. The plate thus sustains a nearly uniform thickness reduction to approximately
1/1.30 of its original thickness. Figure 8 shows a stress measure 11;* based on the normal
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load resultant N; and the initial thickness h(ho) (sec eqn (20». This stress can be thought
of as a normalized, meridional membrane load. Membrane strains arc sufficiently smull in
a thin plate ().I ::::: ).2 ::::: ).. x ).2 ::::: I as shown in Fig. 8(b» that both stress definitions
produce the s..me stress value. Clearly, the membrane load is also lower at the plate center
and higher at its edge compared to a thin plate. In contrast, pl..te thinning generally
reduces bending stresses, ..s shown in Figs 4 and 6. Similar middle surface shape and stress
dependence in pressure-loaded plates has been reported by Taber[2]. Both the large-rotation
and large-strain (thinning) effccts cause the normalized deflcction of a thick plate to be
greater than in a thin plate (see Fig. 7). Shear-related deformations have been neglected in
this analysis. Their contribution to the total deflection ofa moderately thick plate, however,
can be significant.

The calculated meridional radius of curvature (I/kd at the edge of a clamped plate
with a/h = 20 and Q = 30,000 is nearly as large as the (deformed) plate thickness. Thus,
the curvature assumptions used in the derivation of the plate theory are violated and
calculated stresses and deflections in this region are not reliable (see also Taber[lO)). Edge
stresses for moderately thick clamped plates are therefore not shown in Fig. 6.

The large strains, rotations and curvatures demonstrated here underscore the need for
practical, large-strain plate and shell theories. Violation of the curvature assumptions
(II/kil > IOh) used in the plate theory developed herein, at the edge of a clamped plate,
suggest the need for large-strain plate theories which arc even more general.

The maximum deflections shown in Fig. 7 for alh = 10 and 20 correspond to center
deflections of 1.4 times the plate radius and loads of qah2/D = 14. Both hinged plates have
the same middle surface shape (see Fig. 5). When deflections, and hence strains and rotations,
are this large, better similarity between solutions is provided by load parameter qah2/D and
corresponding dimensionless transverse deflections w/a. Identical middle surface shapes are
then produced at high loads qah2/D, and the ratio between shear stress q' and membrane
stress qm is maintained since their dimensionless forms qSh)/D and qmh)/D are the same.
The more usual load parameter qa4/Dh and dimensionless deflection w/h maintain the ratio
between bending stresses qba2h/D and membrane stresses qma2h/D-factors which govern
the small-strain deflection of plates-instead. When strains and rotations are high the
deformation is governed by membrane and shear resultants rather than by bending, and
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the load parameter qah1/D is more suitable. Loads qa4/Dh = qah2D(a/b) 3 would be extreme
in very thin plates (a/b ;;, 400) before this situation would occur; i.e. qab2/D - 10. Thus,
although a distinction should really be made between small-strain and large-strain plate
behavior, within the load domain qa4/Dh ~ 100,000 a distinction based on relative plate
thickness alb is essentially equivalent.

Since incompressible materials have been assumed here. the effect of v bas not been
studied. Its effect on tbe solution is shown in Refs [5, 13]. Changes to the material constants
C t , Cz to model materials which become more or less stiff witb increasing strain produces
corresponding moderate changes in the load-deftection curves.
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